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Variational problems in the gasdynamics of axisymmetric irrotational 
flows have been treated in a large number of papers up to the present 
time. The idea of considering a control contour, which appreciably 
simplifies the solution of the problems, was proposed by Nikol’skii in 
1950 Cd. The method of solution of degenerate variational problems was 
worked oat in 1946 by Okhotsimskii [21. Quderley and Aantsche in 1955 
E31 formulated the problem of the optimal supersonic nozzle and reduced 
it to a boundary problem for ordinary differential equations. In 1957 the 
author of the present paper published [41 the solution of a number of 
variational problems of gasdynamics of a perfect gas. The results of 
these papers, relating to arisysmetric nozzles, were repeated for the 
case of an imperfect gas by Bao in 1958 [51. Rae’ s ‘method differed from 
the method of [3,4], and its proof was given in lQS9 by Gttderley [6]. 
The cited papers touched on necessary conditions for an extremum, and 
[4] indicated a method of investigating the fulfillment of sufficient 
conditions. Fanselau in [‘I] returned to the study of sufficient condi- 
tions for an extremur, but did not obtain constructive results. FinallY, 
Sternin in 1961 [8] derived the equation of the locus of points of ex- 
tremal characteristics, at which the acceleration became infinite, and 
at the same time determined the region of applicability of the prevlousls 
worked out solution with continuous functions. Here is developed a 
further studp of variational problems for axissmmetric supersonic flows. 
Sufficient conditions are determined for attaining the minimum wave drag 
of bodies of revolution, discontinuous solutions are constructed for 
regions in which the minimum is not attained with continuous functions, 
and regions of isentropic flor are delineated. 

The author is deeply grateful to 0-S. Byzhov for valuable discussion 

of the paper, and also to A.N. Belov, rho carried out all the 
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computations, and to L.V. Papandin for executing the graphs. 

1. 'Ihe variational problem. Axisyuvnetric flows of a perfect gas 

satisfy the equations 
arpw cos 6 arptu sin 6 

aX + ar =o 

aw cos 6 
wcos6 ---j-g- + wsin 6 ay!+$g=o 

1 x+1 g+_5_$=_- 
2 x-l 

(l-1) 

P con&, - in the irrotational case -_= 
PK cp” (Ip) - 

In the rotational case 

Here x, r denote Cartesian coordinates in a meridional plane of the 

flow; I is the velocity divided by the critical velocity of sound a*; ,y 

is the angle of inclination of the velocity to the axis of the stream x; 

p is the density of the gas, divided by the stagnation density pb; p is 

the pressure, divided by the product pba’*; K is the adiabatic index; $ 

is the stream function 

(&/J = rpw (COS 6dr - sin +dz)). 

On the characteristics of the system (1.1) the following equations are 

satisfied: 

first kind: 

dr = tau@ + CL) dx 

dfi + 
1+cos2a ’ 
x-cos2a da+ sin6 sina dr -- 

sin(6 +a) r 2Xs~~~i) d In cp” = 0 (4.2) 

second kind: 

dr = tan(B - a) dx 

&$ _ 1+cos2a da_ sin#sina dr 
-+ 2;;; “*, d In (p” = 0 (4.3) 

x - cos 2a sin (6 - a) r 

where a is the Mach angle, related to UJ by the equation IU~(K - cos Z?a) =- 

K + 1. 

Suppose that points a and b are given in the nr plane, together with 

a characteristic of the first kind ae, and moreover the entropy function 

+Oon ae is constant (Fig. 1). It is required to construct the profile 

ab which secures the minimum wave drag. Ibe problem is solved by deter- 

mining the corresponding characteristic of the second kind bc passing 
through the point b. 
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Let us introduce the following notation: P, A, 0 are P, a,6 respec- 

tively on the characteristic ae 

F,= ’ \ cot (0 + A) dP, 17, _: \ t (A) F’dP 

P==‘p, I&, 
sin(8 + A) 

Here s(r) is the Fntropy of the gas on bc, S is the entropy on ae, cv 

is the specific heat of the gas at constant volume; the function q5 is 

the ratio of #JO on bc to the constant 4" on ae. 

First of all we shall assume that the flow in the triangle obc is 

irrotational, i.e. s(r) = 

tion will receive special 

S = const or + = 
attention. 

1. In the sequel this assump- 

For the characteristic bc the following variational problem arises 

L41 . 

and given functions A(P), For given constants rQ, rB, X = xb -.x,, 

o(P), to find the function a(r) realizing the extremum of the functional 

rc 

x = PI (rJ - 
s @I (r, a, p) dr (1.4) 

r=rh 

under the isoperimetric conditions 

'c 

x = Fz(r,) - \ % (a, B)dr, y= 0 = F,(r,) + i (Da(r,a, p) dr (1.5) 
r-lrh r=rh 

and the differential relation 

cD 
4 

= 43 sin [P--f(a)1 sina 
dr r sin [ (3 - f (a) - a] 

=o (l-6) 

The quantity x determines to within a constant factor the wave re- 

sistance of the body of revolution, X is the length of the projection of 
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the profile ab on the x-axis, 

Fig. 1. X 

terms of the variables r, u,fl 

‘7 = 0 is thf: [nett] flux of gas across the 

characteristic contour acb. ‘he function 
p is connected with 6 and a by the equa- 
tions 

P = 6 + f (a) (1.7) 

The condition (1.6) coincides with 
the second equation of (1.3). Here and 
in the sequel the calculations are 
carried through in the system of vari- 
ables r, a, @, but for purposes of pre- 
sentation the formulas are written in 

Admissible functions a(r) must satisfy the following requirements, 
determined by the properties of solutions of Equations (1.1) in problems 
of flow past a surface. The functions a(r) are piecewise continuous. In 
the intervals in which a(r) is continuous, the first derivative of a(r) 
must not exceed certain limits, set by the bend in the contour bounding 
the stream [91. ‘Ihe conditions at the points of discontinuity of a(r) 
must be given special consideration, moreover discontinuities at shock 
waves are not considered because of the assumption as to constancy of 
entropy. 

2. Isentropic discontinuities. A discontinuity of the functions 
on a characteristic of the second kind, accompanied by conservation of 

entropy, is possible in the case of focusing 
of characteristics of the first kind at a 
point d, situated on the characteristic 

n 
c 

under consideration (Fig. 2). For the rela- 
tions obtained at the point d it is suffi- 

y f 
W 

cient to consider plane flow with straight 
__ 

line characteristics. Suppose that at the 
point d the pencil of characteristics adk is 
focused. ‘Ihe intersection of the character- 
istics results in the formation of the shock 

SV$ 

a 9 

k 1 

wave o!n. The reflection of the disturbance 
occurs either as the pencil of character- 

Fig. 2. 

istics Zdg, or else as a shock wave. We shall 
study only the first case. The line df represents the contact discon- 
tinuity. 

lb e quantities a, fi, p, constants in the regions nda, kdl, gdf and 
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fdn, will be distinguished by the indices 0, 1, 2 and 3, respectively. 

The Praudtl-Meyer solution gives 

% + /(a,) = 6, + f(oA fil - f(aJ = 6, - f(az> (2.1) 

where the function f is defined in (1.7). Moreover, 

010 < %r %> a2 (23 

The angle of inclination of the velocity 6, and the pressure pa, 

divided by the product of the gas density in the region r&a and the 

square of the critical speed, are determined by the following relations 

at the shock wave 

IF:, --6,+ -y -w’lg 
x-cos2afJ-((x-i)cos~~ 

(x + 1) sin r cos r 

2 sin2 7 X-l 1-cos2alJ 
p1 :t _- 

x - cos 25x0 2x x - cos 2ae 

(2.3) 

where y is the angle of inclination of the shock wave dn to the direction 

of the velocity wo. 

The pressure p2 is equal to 

1 x -- 
x4-l pz -= --gy c 1 - cos 2a. x--l I- cos2az 

i c --l 
x-cos2ao , x - cos 2aa ) 

On the line df of the contact discontinuity the following 

hold 

6, 2; 6.3, PY= P3 

(2.4) 

relations 

(2.5) 

Accordingly, the ten quantities aO, 60, al, 61, (I~, 6,, pz, Qsr pj, y 

are connected by the seven equations (2.1), (2.3) to (2.5). For example, 

if the quantities as, fiO u1 are given, they determine the remaining 

quantities. lhe parameter 6, is unnecessary, since its variation merely 

rotates the whole flow pattern. 

In accordance with what has been said in this section, we shall assume 

that the function a(r) is admissible if 

and if at the point of 

quantity a undergoes a 

a1 X$X/2 (2.6) 

discontinuity d of the characteristic bc the 

jump from ab to a certain a( satisfying the 
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inequalities 

where aZ is related to aO,fiO, and a1 by the equations (2.11, (2.3) to 
(2.5) and the inequalities (2.2). 

The results of c~utations of 
these equations with K =- 1.4 are 
presented in Fig. 3. Suppose that 
for a given a,, and a certain angle 
of the shock wave y = y,(a&) the 
velocity of sound is attained be- 
hind the shock wave. Then for the 
various combinations of a0 and a1 
we determine the corresponding 
value of the parameter h 

h=r--ao 
1* --a0 

Fig. 3 shows the dependence of 0.4 0.8 1.2 nb 
a2 on the values of h and ab. 'Ihe Fig. 3. 
value of al is shown only where 
it is appreciably greater than a2. 
In the same place we display the function y*(a*). The dotted curves mm 
correspond to altaO, h) =.~*(a,,, h) and delimit the regions of existence 
of solutions of the form under consideration. The regions not enclosed 
by these curves correspond to the occurrence of a reflected shock wave. 

3. nie ertreaal field. Ihe variational problem of Section 1 is 
reduced by the method of Lagrange’s multipliers to the problem of the 
unconditional extremum for the functional 

where 

1 =F(r4 + i 0 (r, a, [3, B',v)dr (3.4) 
P=;P& 

X and p are constants, whilst Y is the variable Lagrange multiplier. 

In the case of continuous functions a(r) this problem is solved in 
[41. 'lhe results which will be necessary later may be reduced to the 
following. 

If the variations are carried out in accordance with the restrictions 



156 Iu.D. Shnyglevskii 

of the problem, the conditions of transversality are fulfilled, and Y is 

chosen so that the variation with respect to ,B is zero, then the first 

variation 
rr 

where 

c& -_ I_ 

1 

(x - cos Za) sin2 (6 - e) 
{a(G()r((I)[qz& 

- 2 cos a (1 -/- cos Zu} 
I 

r + 3L (1 - 31 + 2 cos 24 + 

+ pt (a) [(I - x + 2 cos 2~) cos (6 - a) - (x + 1) cot cc sin (6 

-- 2”, [sin2 2a - 2 (X - cos 2u) sin2 61 
1 

lbe value of v is determined from the equation 

a$-.$ =o 

- 

(3.2) 

(3.3) 

-a)1 I’- 

(3.4) 

where 

@up = - sin2 (L _ e) {rr (d) 10 (a) cos U - p C0s (6 - c1)l - 31. + + sir!” a} (3.5) 

MOreover, the required characteristic bc consists of two segments cd 
and db (Fig. 1). ‘Ihe segment cd is determined by the characteristic ac 

and the bend in the profile ob at the point a. ‘Ihe derivative of a(r) 
along cd assumes the limiting value [!I]. On the segment db the functions 

satisfy Euler’s equations for the given problem @o = 0 and (3.4) and, 

taking into account the condition of transversality, are determined by 

the equations 

v Es 0, rr (a) a (a) S+g = h, Q (a) 
cos(@ +a) = 

CDS a I” (3.6) 

l’be values of X and p are found from the latter equations with r, a, 
*taken at the point d. The Equations (3.6) can be solved with respect 

to r and Zp 

z (4 2 r - kY (a) cos a 
= (a) -p* cos a cos2a- 

- sign (@d -I- ad) p sin 2a t/u” (a) - p2 cos2 a J = h 

(3.7) 
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Finally, we notice that by virtue of the second equation (3.6) with 

a f n/2 the value of 6 

cannot change sign, and 

A > 0. 

Equation (3.7) makes it 

possible to construct the 

function a(r/A, /iI. In 

Fig. 4 are depicted the 

curves a(R) for different 

values of p in the case 

K = 1.4. The value of R is 

determined by the equation 

R= 10h; r (3.9) 

Equation (3.8) or the 

third equation of (3.6) Fig. 4. 

gives the function 6 40, p) . The corresponding curves for K = 1.4 are 

portrayed in Fig. 5. The extremals in the velocity hodograph plane are 

drawn in Fig. 6. 

‘Ihe greatest value of p = p, for which the radical in (3.7) is real 

in the whole interval 0 < a d n/2, is 

p:p=’ 8 v- x+1 

Suppose that the values of a = a,, 6 =6, are determined by the equa- 

tions 

The point with these values of ~1 and a is a saddle-point in the (a, I? ) 

plane and is indicated in Figs. 4-6 by the letter S. Through the point 
S pass two extremals with p = CL,. ‘Ibe point U with a = n/2, 6 = 0 is a 

focal point. 

The extremals in the Ru plane with p > p, are loops. V&en c < c, the 

extremals join the points R = 1, a = 0 and R = 1, u = ~12. The corre- 

spondence of the regions in the Ra, a 6 and w 6 planes is easily follow- 

ed using the values of p shown on Figs. 4-6, 

4. Ihe region of ainimal resistance. Along the characteristics 
of the second kind dr = - sin( 6- a)dl, where I is the arc length of the 
characteristic, measured from the point b and directed towards increas- 
ing gas discharge $, i.e. in the direction of the point c. 
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Using the expression for dr, let us rewrite (3.2) in the form 

1, 

6% = - \ V8adl (V = @‘cr sin (+G a)) (4.1) 

We notice that the signs of dr 

(3.9) and the inequality X > 0. 
and a% coincide by virtue of Equation 

Let us consider now any extremal 

(Fig. 7) in the Ra plane. On it 
V = 0 and the first variation 6x 

vanishes in accordance with (4.1). 

A certain segment of the extremal, 

on which a(R) is a single-valued 

function, secures minimum wave re- 

sistance x if the inequality V < 0 
is valid above it (6~ > 0) in the 

Ih plane, whilst below it (84 < 0) 

the inequality v> 0 holds. In fact, 

the expression (4.1). shows that in 

V 
this case 6x > 0 whatever the 

2 sign of 6a. Accordingly the prob- 

lem consists of determining the 

sign of V in the neighborhood of 
the given segment of the extremal 

in the Raplane. 

From the character of the ex- 

tremal in Equation (4.1) it follows 

that a segment of the extremal de- 

fining minimum x can be joined by 

segments giving maximum x, at 

points where the derivative da/dr 
is infinite with sin( 6. --:a) #+ 0. 

‘These conditions are fulfilled at 

points with infinite accelerations 

(or d a/dZ). Sternin [81 found the 

geanetric locus of points with in- 

finite derivative da/dr by differentiating the expression (3.7) with re- 

spect to a, eliminating the quantity p by means of (3.6) and equating to 

zero the resulting expression. In the case under consideration with study 
of extremal characteristics of the second kind, the equation of the geo- 

metric locus of points with dr/da = 0 obtained in C8I has the form 
T (u, 6) E (x - 1 + 2cosa 2a) cos a - 

-(x + 1) cos a cos 26 - (x - 1 - 

- 2COs 2a) sin u sin 28 = 0 (4.2) 
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This equation has the simple root 6= a + nn, where n is an integer, 

corresponding to a finite acceleration, and also the roots 

indicated in Fig. 5 for n = 0 by the curve VSU. It is easy to show that 

this curve passes through the point S. Here and later the roots of Aqua- 

tion (4.2) with n #IO will not 

receive special consideration, 

as their meaning is obvious. 

‘l’he curve defined by Equa- 

tion (4.3) in the Ra plane in- 

tersects once the loop-shaped 

extremals with p > CL, and 
a <a l , twice the loop-shaped 

extremals with p > II, and a >u*, 

and again once it intersects 

the part of the extremals with 

P < cc,* 

Fig. 5. 

Let us turn to the determi- 

nation of the sign of V outside 

the extremal under cansidera- 

tion and to finding the meaning 

of the function (4.3) from the 
point of view of sufficient conditions for an extremum. ‘Ihe quantity V 

is a functional and depends on the path a =.a(R), joining a certain 

point h of the extremal with a point g 

under consideration (Fig. 7). In fact, a’ 

the quantity 6 is connected with a and 

r by Equations (1.6) and (1.71, whilst 

6, depends at the same time on $, , 
ah and a(r) on hg. Singular points V 

on the extremals are points ac which 

sin(*- a3 = 0, as follows from (4.1) 

and (3.31. It is essential, however, 
that V preserves its sign in such 

neighborhoods of regular points of 
0 

extremals which do not intersect the Fig. 7. 

extremal under consideration. In the 

opposite case the neighborhoods of the 

extremal being considered intersect new extremals @= = 0, but outside 
the curve @, = 0 already known. Accordingly, it is sufficient to deter- 
mine. by any one path the sign of V outside the extremals. We shall 
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choose the following path. In the neighborhood of a regular point q let 

us construct an infinitely small element of the characteristic qf not 

coinciding with the extremal. The quantities 6a and dr on the element 

qf have an order of smallness. The quantity l’ at the point f, with 

accuracy to a quantity of the first order of smallness, is given by 

1’ ; 61’ ::: I ~,im + 1 ‘psp $- 7*-,6v (4.4) 

Let us calculate the variations Sp and 6~. Varying the Equation 

(1.6) and carrying out the integration, we obtain 

dr 

x $- 1) cot (6 - a)l 

The quantity 6 u at the point f is equal to v, since vp = 0, and it 

is determined by Equations (3.4) and (3.5). Moreover a2, = 0 at the point 

q. Therefore on the element qf we have, with accuracy to a quantity of 

the first order of smallness 

@P = (% I v=o)a ha + (@p Iy=Jp W + @dy 

Integrating (3.4) and allowing for the last equation gives 

Equations (4.5) and (4.6) show that the variations 8s and 6v on the 

infinitely small element qf have by comparison with 6a a higher order 

of smallness. Hence also from (4.4) it follows that, with accuracy to a 

quantity of the first order of smallness 

W = Vc,Ga (4.7) 

Let us recall Expression (4.1) for V and (3.3) for @=. Let us differ- 

entiate V with respect to a, as always in the system of variables r, a, 

@, and let us substitute for X and p from (3.6) in the resulting expres- 

sion. Eventually we obtain when V= 0 

v, = - 2rz (a) 0 (a) sin 2a T (a, 6) 
(x - co.5 2a)2 (1 - cos 2a) sin (+ - a) (4.8) 
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where T(a, 2) ) is defined in (4.2). ‘Ihe roots of the equation T(a, 6) = 0 
have already been found. From Formula (4.8) it follows that V, = 0 with 
6 determined by the bations (4.3). It is not difficult to see that 

V, < 0 when 

H (a) < 6 < n + H (a) 
(4.9) 

where 

(1 + cos 2u) sin 2cz 
H (a) = - tan+-% + ,_csz 2a 

i.e. in the region above the curve VSU (Fig. 5)) and Va > 0 when 

-J-C + N (a) < 6 < H (a) (4.10) 

i.e. in the region below the curve VSU. 

In the region (4.9) the sign of V in the neighborhood of the extremal 
is opposite to the sign of 6a by virtue of (4.7). Hence also from (4.1) 
we conclude that the region (4.9) corresponds to minimum drag x. 

Similarly it can be established that the region (4.10) corresponds to 

maximum x. 

Let us return to the Ra plane (Fig. 4). Here the minimum drag corre- 
sponds to the segment of the extremals cut off by the chain-dotted curve 
VSU and depicted by the heavier curves. 

l’he connection between the results of [8I and those obtained here is 
established without difficulty. In fact, the derivative dr/da along the 
extremal, calculated by means of the. equations 

fulfilled on the extremals and considered as an implicit expression for 
F in terms of a, is given by 

On the extremals we have from (4.8) 

aa4 = - 2rz (aj Q (a) sin 2aT (a, 6) 
(X - C0s 2a)’ (1 - cos 2a) sin2 (fl - a) 

(4.11) 

(4.12) 

Similarly we can calculate (4.13’) 

QZP = - (% _ 
TV (cz) Q (a) sin 2aT (a. 6) rt (a) d (a) cos (6 + a) 

cos 2a) (I- cos22a) sin2 (6 - a) ’ u?pp = - 
cosasin(6-a) 
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hcordingly, the numerators of the first and second terms [sic] on 
the right-hand side of (4.11) vanish with 6, defined by Expression (4.3), 
whilst the denominator does not vanish then. 

5, @iscontinuous solutions. By virtue of the degeneracy of the 
variational problem under consideration, a two-sided extremum is not, 
generally speaking, attainable therein, A boundary extremum can be 
attained on the limiting permissible functions a or r, discussed in 
Sections 1 and 2. 'lhe limiting decrease of a on the characteristic in 
moving from the point c to the point b is determined [lO,ll] by the bend 
in the profile ab at the point a. lhe limiting increase of a can be 
achieved with the discontinuous functions considered in Section 2. 

The characteristics of a flow of the first type in the region cad are 
depicted in Fig. 8. In this flow pattern let us draw the curve at, on 
which a and 6 are connected by Equation (4.3) with n = 0. The points of 
the region cat satisfy the conditions (4.9). In this case from each point 
of the region cat we can start an extremal characteristic, defining a 
body with minimal drag. Such continuous solutions were obtained in [41, 
the region of their existence is bounded by the appearance of the 
extremal on the curve VSU (Fig. S), i.e. by the occurrence of points 
with infinite accelerations. 

lbe set of points of the region cat, or at least a part of it, corre- 
sponds to the set of points b, which can be assumed even by the fonnula- 
tion of the problem. The class of solutions of the variational problem 
is extended if we succeed in finding the profile ob with minimal drag 
corresponding in this sense to the points d from (4.10). 

Let us find the solution of the problem for the case when the start- 
ing point d of the extremal (Fig. 8) belongs to the region (4.10). After 
constructing a scheme for the solution it is necessary to prove the ful- 
fillment of the necessary and sufficient conditions for a minimum x for 

all the solutions as a whole. 

Accordingly, the point d belongs to the region (4.10). It is evident 
that from this point it is necessary to pass by a certain path to the 
region (4.9). For each permissible continuous transition, a part of the 
characteristic will belong to the region (4.10) and therefore it can be 
varied in such a way that the quantity x decreases. It remains to make 
use of discontinuous transitions from one region to the other. According 
to the conditions of the problem we allow only isentropic discontinu- 
ities, caused by focusing of the characteristics of the first kind adk 

at the point d (Fig. 8). Such a transition in the a6 plane is traced 

out (Fig.'9) by the curve d,d,, satisfying the equation of the charac- 
teristics of the second kind (1.3) with dr = d$O = 0 
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6, + f (GJ = 61 + d (4 

and by the curve d,d,, satisfying the equation of characteristics of the 

first kind (1.2) with dr = dqb” =- 0 

61 - f (alj = 94 - f h4) 

‘lhe new flow pattern retains supplementary degrees of freedom con- 

nected with the position of the point d (Fig. 8). Let us introduce the 

conditions of transversality corresponding to these degrees of freedom. 

The functional I, expressed by Formula (3.1), can be written in the 

equivalent form [41 

where 

I = F (rC) - i Qdr + i Qdr 

f=rC r=rb 

‘d 

F (rc’,) - 
s 

@dr = F (Td) 

r=rc 

(5.4) 

(5.2) 

Here F(rd) is the same integral as F(F,) in (3.11, but taken along the 

characteristic ad. When calculating the first variation it is necessary 

to allow for the structure of the flow 

in the neighborhood of the point d, de- 

scribed in Section 2. ‘lhe values at the 

point d obtained as one approaches this 

point along the characteristics ad, kd 

and bd, are denoted respectively by the 

indices 0, 1 and 4. 

‘Ibe flow in cad is fixed; only the 

choice of the boundaries ad and dc of 

this region is arbitrary. lbe angle o 

formed by the tangent to the character- 

istics ad and kd at the point d is not 

fixed and can be varied. On the segment 

FQ. 8. db the function U(F) is free, but belongs 

to the class of permissible function of 

the variational problem. Accordingly, between the end values of the prob- 

lem the two coordinates for the point d are arbitrary, completely deter- 

mining the region cad, the quantity o and the terminal value ,rd of the 
segment of the characteristic db, which upon variation can move along 

the fixed characteristic kd. The character of the latter variation is 
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determined by the fact that by virtue of the independence of the solu- 

tion on ok from the segment kb this latter segment must have minimal 

wave resistance. 

As the directions in which to vary the location of the point d, let 

us take the tangents at the point d to the characteristics cd, ad and 

kd, and the corresponding variations in the quantity r will be denoted 

by Srdc, 6rda and 6rdi. 

With the variation Srda it makes the transition from the character- 

istic cd to another characteristic of the second kind in the same region 

cud. Taking account of Equation (5.2), the increment in the first two 

terms of (5.1) can be written as 

[dp (r,~) ! dr,] Effda 

whilst the increment in the third term on account of the variation Srda 

is Q,Brdo. A similar form for the fixed characteristic kd is calculated 

for the variation depending on 6r&’ The part 6Id,k of the variation of 

the functional I, depending on the variations 6r,, and Srdk, takes the 

form 

The variation in the direction of the characteristic of the second 

kind can be carried out for f in the form (5.1). Here the quantity rd 

chaws bu Sr,,, the second term in (5.1) decreases by (bgSrdc, whilst 

the third increases by @,6rdc. Accordingly, the part ST,, of the vari- 

ation of the functional I, depending upon 6rdc, is equal to 

6fd, = (@>a - a>,) twdc (5.4) 

The first variation, depending on 60 vanishes since only the end 

value of Qd in the third term of (5.1) changes with a change in O. 

In view of the independence of 6rdo, 6rdc and Srdk, caused by the 

fact that the point d is a singular point, we obtain from (5.3) and 

(5.4) the conditions for transversality: 

d*+Q)o=o, yp + 04 = 0, @4-a& =o (5.5) 
4 

‘Ihe second of these conditions is subject to the solution (3.6) of 

Euler‘s equations fox the variational problem [4l..‘Ihe first condition 

of (5.5), in which @a is substituted by @a by virtue of the third condi- 

tion of (5.5), and the third condition in expanded form have the 
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following forms, respectively 

t (a,) 6 (a,) [s* - -. cos 60 
]-T(U4)G(U4) [““*‘-sin;I;~a4)J-: 

sin (60 - a0) 

$ A [ COt(+o - Uo) - cot(94 - a4)l + CL [sin (iy? k) - sin ;Bi”ll- Q)] = ’ 

(5.3 

where 

A = T (a,) Q (u4) sgg-4, 
~ ~ Q (a4)cos (64 -I- a4) 

cos a4 
(5.5) 

‘lhe solution is permissible only when the inequalities (2.6) aqd (2.7) 

are satisfied in addition to the conditions (5.6) and (5.7). 

We notice that the equations a4 =-ao, 64 = 6, are double roots for 

the Equations (5.6) to (5.7). If a0 and GOare moreover connected by the 

equation T(ab, 6, ) = 0, where T(a, 6) is defined in (4.21, then we have 

a treble root. We present examples of the solution of bations (5.6) to 

(5.8) for certain values of a6, 60 : 

a0 60 al 61 a4 64 

0.0500 --0.3OOO 0.0914 -0.0991 -0.0860 
0.1000 -0.5000 

Q.0887 
0.1711 -0.1807 0.1679 -@.16il 

(I.1664 -0.6686 0.2670 -0.2789 0.2643 -0.2693 
0.2000 -0.9000 0.3663 -0.3475 0.3586 -0.3268 

In these examples the points ao, tie and al, *a, in the a, ti plane lie 

on different sides of the curve VSU, corresponding to the equation 

T(a, 6) = 0. In the solutions presented the inequalities (2.6) and (2.7) 

are satisfied. 

6. ‘lhe region of shockless solutions. In the original formula- 

tion of the problem the flow was assumed to be isentropic and the value 

of 4 was assumed equal to unity. Let us now determine the region in 

which this assumption actnal1.y secures minimum x. 

We shall assume that the value of +(ct> is variable. ‘Ibe second 

principle of thermodynamics demands the limitation 

9 (r) > 1 (6.13 
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The first variation 61 when (p = 4(r) has the form 

61 = (9 + Qt*) b&a + ( d;y + Q).) &rdk+ (@* - &I) 6rdc + 

The multiplier v is determined by equating to zero the expression 
with 8 8 under the integral sign 

1 

{ 

-- 

sins (6 - a) rz (Cc} lo (a) cos a -~c0s(@-&)] q x1.,- 

--h+ +sirPa -$ 
1 

=O (6.3) 

When we have fulfilled the conditions of transversality, Equation 
(6.3) and the equations 6X =.iW = 0,. specified in the formulation of the 
problem, the variation 6 x haa the form 

‘d 

8% = - \ [CD,& + (CD,+-- $ v’sin 2a ) @Isin (6 - u) dl 
2x(X--ilcp 

(6.4) 

r=Q 
where 

1 

cDcr= r 
sins (6 - a) k (a) z (u) [q- s%&g -2(lf cos2&)cosa 

I 
(p= + 

++(2cos2a-~++)+p~(S) [(ZcosZa --xc 1)cos(6 --a) - 
1 

-x--l 
- (x + 1) ml a sin (6 -U)l cp - 

me- zTs [sin2 2c.t - 2 (x - cos 24 sina 6) j}&e (6.5) 
x 

cl>, -f Sk(u){+- CQS 6 
1 

-- 
P I x-1 _ v sin2u 0,’ 

sin (6 -a) + sin(t?-a) cp 2x (x 7 l)q 

(6.6) 

In the isentropic case v = 0, p is determined by Equation (3.61, and 
the expression standing in the curly brackets of Fonda (6.61, has the 
form 

a(a) in (cosaa-x)sin6-sinacosacos6 
x sin (6 - a) 
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Accordingly, the function @& vanishes when 

6 = -t~B12x_~~~os2a+ nn (‘3.7) 

The relation (6.7) is portrayed in Fig. 5 by the curve VW,U, inter- 

secting the curve VSU at the points V, P, Q, II. It is easy to see that 

above the curve VWU the inequality @d sin(6- a) < 0 holds, whilst be- 

low the curve VWU the inequality 04 sin(6-:a) > 0 holds. 

From (6&l) it follows that when + = 1 permissible variations S+ > 0. 

On the basis of (6.4) we draw the following conclusion. In the region 

sin 2a 
-tan-‘2x-i-cos2a <6Cn-tt-i 2x_S~?~os2a (6.8) 

permissible variations Sq5 lead to an increase in the resistance x. 

Accordingly, in the region (6‘8) minimal resistance is achieved with 

isentropic flows. 

Let us consider the region n, bounded by the line VU, on which fi = 0 

(Fig. 51, the curve (4.3) on the portion VP, the curve (6.7) on the 

portion PWQ, and the curve (4.3) on the portion QU. Suppose that the 

starting point d (Fig. 8) of the extremal belongs to this region. In the 

region Q we have -:n < 6 --:a G 0,’ i.e. with motion along the extremal 

section of the characteristic from the point d to the point b the value 

of I‘ decreases, or at least when 6 = a = 0 it remains unchanged. ‘Ihis 

corresponds to motion along the extremal in the a 6 plane from the line 

VU to the portions VP WQU. Hence it follows that isentropic flows of 

the sort considered exist if the whole of the extremsl belongs to the 

region Cl. 

On extremals with 0 > 0 a similar limitation is not imposed even with 

sufficiently large 6 , since the angle Bon the extremal portions of the 

characteristics does not change sign. 

We notice that the form of the conditions of transversality, obtained 

from (6.2) for the region PWQS, differs from (5.6) to (5.7) in view of 

inequality (6,l). 

With shockless flow in the region u& (Fig. 8) the shock wave dn does 

not exert any influence on the contour ab. 

7. The order of calcmlstion. Suppose we are given the points a and b 
and the characteristic It is assamed that the solution of the prob- 

lem relates to the type under consideration here. 

First of all we work out the flow in the region cad. This can be done, 
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for example, by the method of characteristics 1121. The point d in the 
region cad must be chosen so that the extremaf characteristic db, ob- 
tained as a result OP the calculation, comes to the point 6. At a 
selected point d of the region cad the quantities a0 and 6, are known. 
The values of a4 and 6, are determined, satisfying Equations (5.6) to 
(5.8). It is then necessary to satisfy oneself that the values a4 and I%, 
so determined belong to the region a, whilst the flow in the neighbor- 
hood of the point d corresponds to the type considered in Section 2. The 
latter is achieved by calculation of the flow in the neighborhood of the 
point d according to Formulas (2. l), (2.3) to (2.5) and verifying Pul- 
fillment of inequalities (2.7). 

The values a = a, and 1% -= 6, so found, and also the known value of r 

at the Point d, enable us to calculate h and p Prom Formulas (3.6). From 
Formulas (3.7) and (3.8) we construct the extremal db up to r = rb. Cor- 

rect choice of the coordinates of the point d is confirmed by fulfillment 
of the isoperimetric conditions (1.5). 

The solution obtained must give minimum x. This can be established at 
the minimum so obtained by verifying whether in fact all permissible 
variations lead to an increase in x. Suppose, for example, that the 
characteristic cd is formed in the Ra plane by the curve cd, whilst the 
extremal db is the curve d’b (Fig. 7). The condition V < 0 on the segment 
cd is verified by direct calculation according to Formulas (3.3) and 
(4.2). Permissible variations of a on cd are positive and lead to an in- 
crease in x (boundary extremum). The segment d’b gives rise to 8 two- 

sided minimum of x, since above d’h we have V < 0, whilst below d’b we 

have V > 0. Formula (1.4) enables us to find the value of the wave re- 
sistance of the required body: 

v 2(x + m POX 

To construct the profile ab of the body of revolution it is necessary 
to find x on the characteristic db Prom the formula 

Moreover the solution of 
the known characteristic ad 

generating into the point d 

ffoursat’s problem for Equation (1.1) with 
and a characteristic of the second kind, de- 
(the curve dOdl in Fig. 9). enables us to 

construct the flow in the region adk. By the solution of Goursat’s 
problem with the known characteristic db and the characteristic of the 
first kind degenerating into the point d (the curve d,d, in Fig. 9), the 
flow in the region bdl is constructed. Finally, the solution of Goursat’s 

problem for the characteristics kd and dl so obtained gives the flow in 
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the region kdl. These cnlcalations can also be carried out by the method 
of characteristics. The streamline 
ab found from the flow pattern is 
the rewired profile. 

Pig. 9. 

Pig. 10. 

8. Optimal Lava1 nozzles. This name will he given to nozzles 

which, for a given flow across the inlet a0 (Fig. 10) and fixed points a 

and b, possess maximal thrust (minimum ~1. 

The solution of the problem of constructing an optimal nozzle can be 

obtained in a similar way to the solution of the problem just considered 

concerning the external flow past a body of revolution. Here we must re- 

member that the characteristics of the first and second kinds have ex- 

changed roles. Formally this reduces to saying that in the calculation 

Formulas (1.41, (1.51, (2.11, (2.31 to (2.51, (3.6) to (3.81, (5.61 to 
(5.8) and (7.1) the quantities a with various indices must be replaced 

by the quantities -u with the same indices. ‘Ihe signs of the values of 

a in (2.7) must be conserved. ‘Ibe working diagrams for K = 1.4 remain 

unchanged in Figs. 3-6, but in Figs. 5 and 6 the quantity d must be re- 

placed by - 6. Further reasoning in this section is based on the assump- 

tion that all these substitutions in the formulas and figures mentioned 

have already been carried out. 

It is necessary to notice the following peculiarity of flows in 

nozzles. 

The region Q corresponds to the inequality 6 + u > 0, showing that 

for motion along the extremal characteristic db from the point d to the 

point b the value of I” increases (Fig. 10). Mareover in the RQ plane 
(Fig. 4) the motion originates in the side with the greatest R, whilst 

in the o6 plane (Fig. 5) the motion is from the curve ~P~~~ to the 



170 Iu.D. Shryglevskii 

line VU. Consequently, if the point d belongs to the region Cl, then 
this point corresponds to the extremal db with arbitrarily large values 
of ‘b. 

If the surface of transition of au axisymetric nozzle is plane and 
a = 1.4, then the flow in the region of free expansion is bounded in the 
a6 plane (Fig. 5) by the lines 6 = 0, a = 0 and the curve UT, repre- 
sentiug a characteristic of the Prandtl-Meyer flow. From Fig. 5 it 
follows that the greater part of this region leads to isentropic extremal 
solutions and only a small sub-region in the neighborhood of the point P 
is connected with the formation of shock waves. The latter case occurs if 
the point d in the a* plane is sufficiently’ close to the curve UT, i.e. 

if the point b in the x, r plane is sufficiently close to the point a. 
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